EFFECT OF A SHOCK WAVE ON HEAT PROPAGATION
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The nature of the propagation of a thermal wave produced by a powerful explosion was described
in a number of papers, for example, [1-6]. It was shown by a numerical method [4] that a shock
wave is present together with the thermal wave, In this paper, the effect of a homothermal
shock wave on heat propagation is evaluated by an approximate method.

At some initial time let an energy E, be deposited and let spherical thermal waves and spherical
shock waves be propagated from the point of energy deposition, We consider a time interval such that one
can neglect radiative energy and need not consider the formation of an external shock wave at the thermal
front. The gas is assumed ideal, and the physical properties of the heated air are taken into account by the
introduction of effective values for the adiabatic index vy and the molecular weight 4.

The equation of heat transport for a thermal wave including radiation is written in the radiative ther-
mal-conductivity approximation as

Rp dl' _ RT dp _ —div s, )

p{y—1) dt woodt

where S is the flux of radiant energy.
At high temperature, one can roughly assume the temperature to be constant over the entire heated
region:
{T(r, H=T(t), r < re
\T(r, £)=0, r > rq,
where S isthe radius of the thermal-wave front,

On the shock front (r = ry < rr) being propagated in the heated gas, relations must be satisfied which
reflect conservation laws at the isothermal compression discontinuity:

fPll(D —vy) = pyD;

p1t+e1(D—v,)? = p,+ peD?; 2)
D—w)? | S5y _ D°
2 pD T 27

where S, — 8, is the radiation flux from the shock front, We assume that it results from motion of the gas.

We have from Egs. (2)

D3 4
So— 81 = poz (1_'%4)’ @)

where D is the velocity of the shock front and @ = YRT/u is the isothermal velocity of sound,

Because of its motion, the gas possesses kinetic energy along with internal energy, with the total energy
E, being conserved,
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EOZET~.~E5 or (4)

Propagation of the thermal wave depends on the density and velocity distribution of the gas behind the
shock front,

One can roughly assume that

. ,
o =0, nggLJL (5)

UZDQ_%%, (6)

Equation (5) was proposed by Ya, B, Zel'dovich and is valid for a strong shock {7]. The problem is
solved approximately. Multiplying Eq. (1) by 47r°, integrating from 0 to rt, and taking Eqgs, {3)-(6) into
consideration, we obtain ’

MR _ - '
wR T ot o [(1 ad/DY (1 a2/D2)3] — hnrdSe, 7

ply—1ya 2 S+m

where 8- is the radiation flux from the thermal-wave front; My = 47rp0r /3. With the equation of motion
taken into consideration, Eq. (1) reduces to

1 9 ( pRT oo\ 18 5 pRT g2, \_ 13, , (8)
"o (u<v—1)+ ) FZ—ErU(H(Y‘—i) ‘7"—})) G

Integrating Eq, (8) within the boundaries of the region bounded by the shock wave, we obtain

(dEy MR 4T 2
7 5 ‘_—P’ G—0 'd—t“ = —43'57‘1:5'0,

MR dT
e (vi T — dour [51 53 o, D3 (1 — az/Dz)]

(9)

where M, = 4mpori/3.

Eliminating the gas temperature from Eqs, (9) and using Eqgs. (3) and {4), we obtain an equation which
describes the variation of the internal energy Eg of the thermal wave,

alp 2 (1 —a¥/D%)  3(1— a?/D?)
= 4ﬂr1p0D3[ 5 — =3 ] (10)
Substituting the value
_4m RT
Er=3 p“rTMv—i)
in Eq. (10) and using Eq, (7), we have
drp _ Seply—1) (11)
dt ~  p,RT °*

To determine the propagation law for the thermal-wave front in accordance with Eq, (10), it is neces~
sary to specify the radiation flux S+ from the front,

If the temperature in the thermal wave is kept strictly constant along the radius, the radiation flux
is then

Se=o0T* (12)
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rm [ — As a matter of fact, the temperature varies along r, which leads to a
50 // change inthe quantity (12) by a factor £(Ig /rr) where ZR is the Rosseland
2 range.
—-’3”
45 % / We choose the numerical coefficient ¢ sothat the law for propagation
Vs i of the thermal-wave front without inclusion of gas motion agrees with
é that known from the self-similar solution [1].
40 If one assumes I = (T]/10%)? m, then
) 7.52( T \2
35 - S = Ty (TO_“) o™ (13)
0 0,5 1,0 15t
107% sec . . .
» We determine the propagation of the shockwaveusing Eqs, (4)- (6)
Fig. 1 and the relation (2) at the shock front,
dn_p_ 3(£y— Eq) (m‘-;s) 1/2( 1 ) (14)
da — 2r3p, m-+3 1—a?/D2%)"
The gas temperature is calculated from
3E, —1
7 — Ty - Yo . (15)
4mpg Rrip

For a strong shock wave, where the conditions ¢%/D* <« 1 and m > 5 are satisfied, we have from
Egs, (10)-(14)

dEq dEy o, o p3,
& =@ = e
dry [ 3Ex \V2, 16
dt =D= (2ﬁr§’p0> ’ (16)
ww__u(v—-D75240_”0(&Nv——Drf§
@ 3 Inp,R | 3%
{ T
We have from the first two equations in (16)
14
Th (D2r?) = — D3,
Substituting d/dt = D(d/dr,) and integrating, we obtain
ry=cy(£-4c)¥4, (17

where ¢; and ¢, are constants to be determined,
Using Eq. (17), the values of E and rp are determined from Eq, (16):
Ep=E\l — ev—34);
ro =B B, (v [1 — 206t — 20(er—¥/4)2+ (18)

+-8(eT—3/4)3 — 5/2(er—%41- 41 (e1—3)5 |+
-1 2 BB [r(1 — 20e1—4%) oy VY,

where 7 =1 + ¢y

_dmpe o

¢=3E, 16
£ = 17p (p — 1) 7.52-10—120 (3p (y—a))“]‘/”
0= Rp, 4nip R :

The coefficients ¢, c;, and c; are determined by the condition that the radii of the shock and thermal
fronts are, respectively, ry; and roq at a given time t; and a (1-k)-th portion of the explosion energy is
transferred to the kinetic energy.
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Note that for 7 — =, the value of rp from Eq. (18) transforms into the well-known solution of [1].

The system of ordinary differential equations (10)-(15) was integrated numerically on a computer
by the Runge— Kutta method, The following values were used as input data:

E,=4.18. 105 I; o = 2-10—3%sec;
rpo=35m; ri=8 m; y=1.37; p = 2.07;
Epy=~kE,.

The caleulations were performed for k = 0.3, 0.5, and 0.7,

The results of numerical calculations of the time dependence of the radius of the thermal front are
given in Fig. 1, Curve 1 corresponds to the self~-similar solution [1] (ET = E; = 4.18 <1018 7 k = 1); curves
2, 4, and 5 correspond to the values k = 0.7, 0.5,and 0,3, and curve 3 corresponds qualitatively to the nu-
merical calculations in [4], Notethat for k = 0.7 and 0.5, the numerical solutions agree satisfactorily with
the solutions obtained from Eq. (18).

The results indicate that the shock wave has a significant effect on the propagation of heat,

Finally, we evaluate the accuracy of the selected approximate method as exemplified by the propaga-
tion of a homothermal shock wave. Accordingtothe exact self-similar solution of [3], the radius of the
shock front, for a density ratio A = 2 at the front, is

1/3 _ 1/5
r=y (Bo) o (B ) g, (19)

%o

where o =0.0643 +{0.163/(y —1)]. Honeassumesy= 1,37, & =1.12, In the approximate method, the radius
Ty is determined from Eq. (19) where

16:1 S(A—12 |, A1 1 )
= M@ F2) ¢ AT y—1;

if one assumes as in the exact solution that A =2, v = 1,37, then ¢ =1,11. Note that a value of 1,04 is ob-
tained for ¢& fromthe thin-layer method of Chernyi (8],

The comparisons made demonstrate the acceptability of approximate methods for describing the be-
havior of thermal and shock-front propagation.
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